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ABSTRACT could be loaded and run on the available hardware. A fi-
Automatic language identification is the process by which nal language-ID determination would be made only after
the language of a digitized speech utterance is recognized speech recognition was complete.
by a computer. In this paper, we will describe the set of Figure 2 illustrates an example of the second category
available cues for language identification and discuss the of LID applications-preprocessing for human listeners.
different approaches to building working systems. This In this case, LID is used to route an incoming telephone
overview includes a range of historic approaches, con- call to a human switchboard operator fluent in the corre-
temporary systems that have been evaluated on standard sponding language. Such scenarios are already occurring
databases, as well as promising future approaches. Com- today: for example, AT&T offers a Language Line inter-
parative results are also reported. preter service to, among others, police departments han-

dling emergency calls. When a caller to Language Line

1. INTRODUCTION does not speak English, a human operator must attempt
to route the call to an appropriate interpreter. Much of

Automatic language identification is the process by which the process is trial and error (for example, recordings of

the language of a digitized speech utterance is recognized greetings in various languages can be used) and can re-

by a computer. It is one of several processes in which in- quire connections to several human interpreters before the
formation is extracted automatically from a speech signal. appropriate person is found. As reported by Muthusamy

Language-ID (LID) applications fall into two main et al. [33], when callers to Language Line do not speak
categories: preprocessing for machine systems and pre- English, the delay in finding a suitable interpreter can be
processing for human listeners. Figure 1 shows a ho- on the order of minutes, which could prove devastating in

tel lobby or international airport of the future that em- an emergency. Thus, a LID system that could quickly de-
ploys a multi-lingual voice-controlled travel information termine the most likely languages of the incoming speech
retrieval system. If no mode of input other than speech might be used to reduce the time required to find an ap-
is used, then the system must be capable of determining propriate interpreter by one or two orders of magnitude.
the language of the speech commands either while it is
recognizing the commands or before it has recognized the 2. LANGUAGE IDENTIFICATION CUES
commands. Determining the language during recognition
would require many speech recognizers (one for each lan- Humans and machines can use a variety of cues to distin-
guage) running in parallel. Because tens or even hundreds guish one language from another. The reader is referred
of input languages would need to be supported, the cost of to the linguistics literature (e.g., [5, 6, 121) for in-depth
the required real-time hardware might prove prohibitive, discussions of how specific languages differ from one an-
Alternatively, a language-ID system could be run in ad- other and to Muthusamy et al. [35], who has measured
vance of the speech recognizer. In this case, the language- how well humans can perform language ID. In summary,
ID system would quickly list the most likely languages the following characteristics differ from language to lan-
of the speech commands, after which the few most ap- guage:
propriate language-dependent speech-recognition models * Phonology. A "phoneme" is an underlying men-

THIS WORK WAS SPONSORED BY THE DEPARTMENT tal representation of a phonological unit in a lan-
OF DEFENSE UNDER AIR FORCE CONTRACT F19628-95-C- guage. For example, the eight phonemes that com-
0002. OPINIONS, INTERPRETATIONS, CONCLUSIONS, AND prise the word "celebrate" are Is eh 1 ix b r
RECOMMENDATIONS ARE THOSE OF THE AUTHORS AND ARE
NOT NECESSARILY ENDORSED BY THE UNITED STATES AIR ey t/. A "phone" is a realization of an acoustic-
FORCE. phonetic unit or segment. It is the actual sound
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Figure 1: A language-identification (LID) system as a front end to a set of real-time speech recognizers. The LID system
outputs its three best guesses of the language of the spoken message (in this case, German, Dutch, and English). Speech-
recognizers are loaded with models for these three languages and make the final LID decision (in this case, Dutch) after
decoding the speech utterance.
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Figure 2: A language-identification (LID) system as a front end to a multi-lingual group of directory-assistance or emer-
gency operators. The LID system routes an incoming call to a switchboard operator fluent in the corresponding language.

produced when a speaker is thinking of speak- phones/phonemes, can also be different.
ing a phoneme. The phones that comprise the
world celebrate might be [s eh 1 ax bcl b r 9 Morphology. The word roots and lexicons are usu-
ey q]. As documented by linguists, phone and ally different from language to language. Each lan-
phoneme sets differ from one language to another, guage has its own vocabulary, and its own manner
even though many languages share a common sub- of forming words.
set of phones/phonemes. Phone/phoneme frequen-
cies of occurrence may also differ, i.e., a phone may * Syntax. The sentence patterns are different among
occur in two languages, but it may be more fre- languages. Even when two languages share a word,
quent in one language than the other. Phonotactics, e.g., the word "bin" in English and German, the sets
i.e., the rules governing the sequences of allowable of words that may precede and follow the word will

be different.



107

* Prosody. Duration characteristics, pitch contours, 3.1. Spectral-Similarity Approaches
and stress patterns are different from one language
to another. In the earliest automatic language ID systems, developers

capitalized on the differences in spectral content among
languages, exploiting the fact that speech spoken in dif-
ferent languages contains different phonemes and phones.

3. LANGUAGE IDENTIFICATION SYSTEMS To train these systems, a set of prototypical short-term
spectra were computed and extracted from training speech

Research in automatic language identification from speech utterances. During recognition, test speech spectra were
has a history extending back to the 1970s. A few repre- computed and compared to the training prototypes. The
sentative LID systems are described below. The reader language of the test speech was hypothesized as the lan-
will find references to other LID systems in reviews by guage having training spectra that best matched the test
Muthusamy et al. [33] and Zissman [50]. spectra.

Figure 3 shows the two phases of LID. During the There were several variations on this spectral similar-
"training" phase, the typical system is presented with ex- ity theme. The training and testing spectra could be used
amples of speech from a variety of languages. Each train- directly as feature vectors, or they could be used instead to
ing speech utterance is converted into a stream of fea- compute formant-based or cepstral features vectors. The
ture vectors. These feature vectors are computed from training exemplars could be chosen either directly from
short windows of the speech waveform (e.g. 20 ms) dur- the training speech or could be synthesized through the
ing which the speech signal is assumed to be somewhat use of K-means clustering. The spectral-similarity could
stationary. The feature vectors are recomputed regularly be calculated by the Euclidean, Mahalanobis, or some
(e.g. every 10 ms) and contain spectral or cepstral infor- other distance metric. Examples of spectral similarity LID
mation about the speech signal (the cepstrum is the inverse systems are those proposed and developed by Cimarusti
Fourier transform of the log magnitude spectrum; it is [4], Foil [11], Goodman [13], and Sugiyama [45].
used in many speech processing applications). The train- To compute the similarity between a test utterance and
ing algorithm analyzes a sequence of such vectors and a training model, most of the early spectral-similarity sys-
produces one or more models for each language. These tems calculated the distance between each test utterance
models are intended to represent a set of language depen- vector and each training exemplar. The distance between
dent, fundamental characteristics of the training speech to each test vector and its closest exemplar was accumulated
be used during the next phase of the LID process. as an overall distance, and the language model having

During the "recognition" phase of LID, feature vec- lowest overall distance was found. In a generalization
tors computed from a new utterance are compared to each of this vector quantization approach to LID, Riek [40],
of the language-dependent models. The likelihood that Nakagawa [37] and Zissman [49] applied Gaussian mix-
the new utterance was spoken in the same language as ture classifiers to language identification. Here, each fea-
the speech used to train each model is computed and the ture vector is assumed to be drawn randomly according
maximum-likelihood model is found. The language of the to a probability density that is a weighted sum of multi-
speech that was used to train the model yielding maxi- variate Gaussian densities. During training, a Gaussian
mum likelihood is hypothesized as the language of the ut- mixture model for the spectral or cepstral feature vectors
terance. is created for each language. During recognition, the like-

The key issue becomes that of modeling the lan- lihood of the test utterance feature vectors is computed

guages. We will discuss a series of different features given each of the training models. The language of the

that have been extracted from speech, yielding increas- model having maximum likelihood is hypothesized. The

ing amounts of knowledge at the cost of rendering the Gaussian mixture approach is "soft" vector quantization,
language identifications system more and more complex. where more than one exemplar created during training im-

Some systems require only the digitized speech utterances pacts the scoring of each test vector.
and the corresponding true identities of the languages be- Whereas the language identification systems described
ing spoken because the language models are based sim- above perform primarily static classification, hidden Mar-
ply on the signal representation or on self generated to- kov models (HMMs) [38], which have the ability to model
ken representation. More complicated LID systems use sequential characteristics of speech production, have also
phonemes to model speech and may require either (1) a been applied to LID. HMM-based language identification
phonetic transcription (sequence of symbols representing was first proposed by House and Neuburg [17]. Savic
the spoken sounds), or (2) an orthographic transcription [41], Riek [40], Nakagawa [37], and Zissman [49] all
(the text of the words spoken) along with a phonemic applied HMMs to spectral and cepstral feature vectors.
transcription dictionary (mapping of words to prototypi- In these systems, HMM training was performed on unla-
cal pronunciation) for each training utterance. Producing beled training speech. Riek and Zissman found that HMM
these transcriptions and dictionaries is an expensive, time systems trained in this unsupervised manner did not per-
consuming process that usually requires a skilled linguist form as well as some of the static classifiers that each had
fluent in the language of interest, been testing, though Nakagawa eventually obtained bet-
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Figure 3: The two phases of language identification. During training, speech waveforms are analyzed and language-
dependent models are produced. During recognition, a new speech utterance is processed and compared to the models
produced during training. The language of the speech utterance is hypothesized.

ter performance for his HMM approach than his static ap- Finally, Thyme-Gobbel et al. [47] have also looked
proaches [36]. at the utility of prosodic cues for language identification.

Li [26] has proposed the use of novel features for Parameters were designed to capture pitch and amplitude
spectral-similarity LID. In his system, the syllable nu- contours on a syllable-by-syllable basis. They were nor-
clei (i.e. vowels) for each speech utterance are located malized to be insensitive to overall amplitude, pitch and
automatically. Next, feature vectors containing spectral speaking rate. Results show that prosodic parameters can
information are computed for regions near the spectral be useful for discriminating one language from another;
nuclei. Each of these vectors is comprised of spectral however, the accuracy of any particular set of features is
sub-vectors computed on neighboring (but not necessar- highly language-pair specific.
ily adjacent) frames of speech data. Rather than collect-
ing and modeling these vectors over all training speech, 3.3. Phone-Recognition Approaches
Li keeps separate collections of feature vectors for each
training speaker. During testing, syllable nuclei of the test Given that different languages have different phone in-
utterance are located and feature vector extraction is per- ventories, many researchers have built LID systems that
formed. Each speaker-dependent set of training features hypothesize exactly which phones are being spoken as
vectors is compared to the feature vectors of the test utter- a function of time and determine the language based on
ance, and the most similar speaker-dependent set of train- the statistics of that phone sequence. For example, Lamel
ing vectors is found. The language of the speech spoken built two HMM-based phone recognizers: one in English
by the speaker of that set of training vectors is hypothe- and another in French [25]. These phone recognizers were
sized as the language of the test utterance. then run over test data spoken either in English or French.

Lamel et al. found that the likelihood scores emanat-
3.2. Prosody-based Approaches ing from language-dependent phone recognizers can be

used to discriminate between English and French speech.
Features that carry prosodic information have also been Muthusamy et al. ran a similar system on English vs.
used as input to automatic language identification sys- Japanese spontaneous, telephone-speech [32].
tems. This has been motivated, in part, by studies showing The novelty of these phone-based systems was the in-
that humans can use prosodic features for identifying the corporation of more knowledge into the LID system. Both
language of speech utterances [35, 31]. For example, Ita- Lamel et al. and Muthusamy et al. trained their sys-
hashi has built systems that use features based on pitch tems with multi-language phonetically labeled corpora.
estimates alone [18, 19]. He argues that pitch estimation Because the systems require phonetically-labeled training
is more robust in noisy environments than spectral param- speech utterances in each language, as compared to the
eters. spectral-similarity systems which do not require such la-

Hazen [14], however, showed that features derived bels, it can be more difficult to incorporate new languages
from prosodic information provided little language dis- into the language recognition process. This problem will
criminability when compared to a phonetic system. A be addressed further in Section 3.4.
system that used both prosodic and phonetic parameters To make phone-recognition-based LID systems easier
performed about the same as a system using phonetic pa- to train, one can use a single-language phone recognizer
rameters alone. as a front end to a system that uses phonotactic scores to
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perform LID. Phonotactics are the language-dependent set approaches to language ID. These systems use more so-
of constraints specifying which phonemes are allowed to phisticated sequence modeling than the phonotactic mod-
follow other phonemes. For example, the German word els of the phone-level systems, but do net employ full
"spiel" which is pronounced /sh p iy 1/ and might be speech-to-text systems.
spelled in English as "shpeel" begins with a consonant Kadambe [20] proposed the use of lexical modeling
cluster /sh p/that cannot occur in English (except if one for language identification. An incoming utterance is pro-
word ends in /sh/ and the next begins with /p/, or in a cessed by parallel language-dependent phone recogniz-
compound word like "flashpoint"). This approach is rem- ers. Hypothesized language-specific word occurences are
iniscent of the work of D'Amore [9, 21], Schmitt [42], and identified from the resulting phone sequences. Each lan-
Damashek [8], who have used n-gram analysis of text doc- guage dependent lexicon contains several thousand en-
uments to perform language and topic identification and tries. This is a bottom-up approach to the language ID
clustering. By "tokenizing" the speech message, i.e. con- problem, where phones are recognized first, followed by
verting the input waveform to a sequence of phone sym- words, and eventually language. Thomas [46] has shown
bols, the statistics of the resulting symbol sequences can that a language-dependent lexicon need not be available in
be used to perform language identification. Hazen [15] advance; rather, it can be learned automatically from the
and Zissman [51] each developed LID systems that use training data. Ramesh [39], Matrouf [29], Lund [28, 27]
one, single-language front end phone recognizer. An im- and Braun [3] have all proposed similar systems.
portant finding of these researchers was that language ID
could be performed successfully even when the front end 3.6. Continuous Speech Recognition
phone recognizer(s) was not trained on speech spoken in
the languages to be recognized. For example, accurate By adding even more knowledge to the system, re-
Spanish vs. Japanese LID can be performed using only searchers hope to obtain even better LID performance.
an English phone recognizer. Zissman [51] and Yan [48] Mendoza [30], Schultz [43, 44] and Hieronymus [16] have
have extended this work to systems containing multiple, shown that large-vocabulary continuous-speech recogni-
single-language front ends, where there need not be a front tion systems can be used for language ID. During train-
end in each language to be identified. Figure 4 shows an ing, one speech recognizer per language is created. Dur-
example of these types of systems. ing testing, each of these recognizers is run in parallel,

and the one yielding output with highest likelihood is se-
3.4. Using Multilingual Speech Units lected as the winning recognizer-the language used to

train that recognizer is the hypothesized language of the
Alternative approaches to training language dependent utterance. Such systems hold the promise of high qual-
phoneme recognizers use multi-lingual speech units. These ity language identification, because they use higher-level
are derived by either a mixture of language dependent knowledge (words and word sequences) rather than lower-
and language independent phones or by deriving tokens level knowledge (phones and phone sequences) to make
automatically from training data. Advantages of this ap- the LID decision. Furthermore, one obtains a transcrip-
proach include data sharing and discriminant training be- tion of the utterance as a byproduct of LID. On the other
tween phonemes across languages and easy bootstrapping hand, they require many hours of labeled training data in
to unseen languages [10]. each language to be recognized and are the most compu-

Research has also focused on the problem of iden- tationally complex of the algorithms proposed.
tifying and processing only those phones that carry the
most language discriminating information [1, 52]. These 4. EVALUATIONS
language-dependent phones are called "mono-phonemes"
or "key-phones" in the literature. Kwan [24] and Dals- From 1993-1996, the National Institute of Standards and
gaard [7] use both language specific and language in- Technology (NIST) of the U.S. Department of Commerce
dependent phones in their systems. The language- in- has sponsored formal evaluation of language ID systems.
dependent phones, sometimes called "poly-phones", can At first, these evaluations were conducted using the Ore-
be trained on data from more than one language with- gon Graduate Institute Multi-Language Telephone Speech
out loss of language ID accuracy. Berkling [2], and (OGI-TS) Corpus [34]. The OGI-TS corpus contains 90
K6hler [22, 23] have also tested systems that use a single speech messages in each of the following 11 languages:
multi language front end phone recognizer, i.e., a recog- English, Farsi, French, German, Hindi, Japanese, Korean,
nizer containing a mixture of "poly-phones" and "mono- Mandarin, Spanish, Tamil, and Vietnamese. Each mes-
phones". sage is spoken by a unique speaker and comprises re-

sponses to ten prompts. For NIST evaluations, the mono-

3.5. Word Level Approaches logue speech evoked by the prompt "Speak about any
topic of your choice" is used for both training and test-

Between phone-level systems described in the previous ing. No speaker speaks more than one message or more
sections and the large-vocabulary speech recognition sys- than one language, and each speaker's message was spo-
tems described in a subsequent section are "word-level" ken over a unique long-distance telephone channel. Pho-
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Figure 4: A LID system that uses several phone recognizers in parallel.

netically transcribed training data is available for six of the evaluation of CSR-based LID systems will become more
OGI languages (English, German, Hindi, Japanese, Man- feasible. Whether the performance they will afford will be
darin and Spanish). worth their computational complexity remains to be seen.

Performance of the best systems from the 1993, 1994
and 1995 NIST evaluations is shown in Figure 5. This 5. CONCLUSIONS
performance represents each system's first pass over the
evaluation data, which means that no system-tuning to the Since the 1970s, language identification systems have be-
evaluation data was possible. For utterances having du- come more accurate and more complex. Current sys-
ration of either 45 s or 10 s, the best systems can dis- tems can perform two-alternative forced-choice identifi-
criminate between two languages with 4% and 2% er- cation on extemporaneous monologue almost perfectly,
ror, respectively. This error rate is the average com- and these same systems can perform 10-way identification
puted over all language pairs with English, e.g., English with roughly 10% error. Though error rates on conversa-
vs. Farsi, English vs. French, etc. When tested on nine- tional speech are somewhat higher, there is every reason to
language forced-choice classification, error rates of 12% believe that continued research coupled with competitive
and 23% have been obtained on 45-s and 10-s utterances, evaluations will result in improved system performance.
respectively. The syllabic-feature system developed by Li The improved performance of newer LID systems is
and the systems with multiple phone recognizers followed due to their use of higher levels of linguistic information.
by phonotactic language modeling developed by Zissman Systems which try to model phones, phone frequencies,
and Yan have exhibited the best performance over the and phonotactics naturally perform better than those that
years. Error rate has decreased over time, which indicates model only lower-level acoustic information. Presumably,
that research has improved system performance. systems that model words and grammars will be shown to

Starting in 1996, the NIST evaluations have em- have even better accuracy.
ployed the CALLFRIEND corpus of the Linguistic Data Improved performance, however, comes at a cost.
Consortium. CALLFRIEND comprises two-speaker, The higher levels of linguistic information must be pro-
unprompted, conversational speech messages between grammed or trained into the newer LID systems. Whereas
friends. 100 North-American long distance telephone older systems required only digitized speech samples in
conversations were recorded in each of twelve languages each language to be recognized, more modern systems
(the same 11 languages as OGI-TS plus Arabic). No tend to require either a phonetic or orthographic transcrip-
speaker occurs in more than one conversation. In the 1996 tion of at least some of the training utterances. State-of-
evaluation, the multiple phone recognizer followed by lan- the-art large-vocabulary CSR systems are often trained on
guage modeling systems of Yan and Zissman performed hundreds of hours of transcribed speech. In recognition
best. The error rates on 30 s and 10 s utterances were 5% mode, these systems tend to run tens or even hundreds of
and 13% for pairwise classification. These same systems times slower than real-time. Thus, the potential user of
obtained 23% and 46% error rates for twelve-language LID must balance the need for accuracy against the need
classification. The higher error rates on CALLFRIEND for speedy deployment and low-cost (and possibly real-
are due to the informal conversational style of CALL- time) implementation.
FRIEND vs. the more formal monologue style of OGI-TS.

The CSR-based LID systems have not been fully eval- 6. REFERENCES
uated at NIST evaluations, because orthographically and
phonetically labeled speech corpora have not been avail- [1] K. M. Berkling, T. Arai, E. Barnard, and R.A.Cole.
able in each of the requisite languages. As such corpora Analysis of phoneme-based features for language
become available in more languages, implementation and identification. In International Conference on
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